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Abstract. In this paper, different considerations on atoms, pseudo-atoms 

and minimal atoms are given for several types of non-additive set functions. In 
this sense, their properties, different relationships, examples and 
counterexamples are given. 
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1. Introduction 

 
In mathematical analysis, a measure (in classic sense) is a function 

which ,,measures”, assigning to certain sets of a class (family) of sets, a positive 
real number or +∞. In this sense, a measure is a generalization of the concepts 
of length, area or volume. One particularly important example is the Lebesgue 
measure on a Euclidean space, which assigns the conventional length, area and 
volume of Euclidean geometry to appropriate subsets of the Euclidean space 
ℝ𝑛𝑛. For instance, the Lebesgue measure of the interval [0,1] is its length in the 
ordinary sense of the word, namely,  (Precupanu, 1988; Precupanu, 2006; 
Royden, 1988; Fremlin, 2000). A measure must be additive, which means that 
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the measure of a set representing the union of a finite (or countable) number of 
smaller sets that are pairwise disjoint is equal to the sum of the measures of 
these smaller subsets. 

The notions that we shall introduce next have contributed (among many 
others) to the development in recent years of the theory of non-additive 
measures, sometimes known as the fuzzy measures theory (Pap, 1995a). These 
notions prove their utility due to the necessity to model phenomena from the 
real world, in circumstances in which the condition of additivity (either finite or 
countable), as an immediate property of a measure, is much too restrictive. 

On the other hand, the problem of atomicity is known in different 
acceptions. In partially ordered sets, atoms are generalizations of the singletons 
(that is, sets containing only one element) of the sets theory. Moreover, in this 
sense, atomicity (the property of a mathematical object of being atomic), 
provides a generalization in an algebraic context of the possibility of selecting 
an element from a nonempty set.  

In fact, in mathematical logic, an atomic formula is a formula without a 
deep propositional structure, that is, a formula that does not contain logical 
connections, or, equivalently, a formula that does not have strict subformulas. 
Atoms are thus the simplest well-formed formulas of logic, the compound 
formulas being formed by combining atomic formulas using logical 
connections. Also, also in logic, an atomic sentence is a type of declarative 
sentence that is either true or false and that cannot be broken down into other 
simpler sentences. In some models of set theory, an atom is an entity (a 
mathematical object) that can be an element of a set but does not itself contain 
elements with similar properties (hence the “ultimate” character of an atom). 

As we shall see in what follows, the measure theory perspective 
preserves the intimate, defining property of the atom, in its various forms and 
mathematical meanings of being, in a sense, the essential indestructible, 
indivisible, irreducible, minimal and self-similar unity. We shall emphasize that 
an atom is a mathematical object (an entity) that, in essence, has no other 
subobjects (subentities) than the object itself or the null subobject. The idea is 
also found in computer science, for example. Thus, in database systems, an 
atomic transaction is an indivisible and irreducible series of database operations, 
so that either all of them occur or nothing happens. 
 

2. Types of Atoms 
 

Let 𝒞𝒞 be a ring of subsets of a non-empty abstract set 𝑇𝑇 and 𝑚𝑚:𝒞𝒞 → ℝ+ be a set 
function which satisfies the condition 𝑚𝑚(∅) = 0 . The following notions 
generalize the notion of a measure in its classic sense.  
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The set function 𝑚𝑚 is called: 
(i) null-additive if 𝑚𝑚(𝐴𝐴 ∪ 𝐵𝐵) = 𝑚𝑚(𝐴𝐴),  for every sets  𝐴𝐴,𝐵𝐵 ∈ 𝒞𝒞, satisfying the 
condition 𝑚𝑚(𝐵𝐵) = 0; 
(ii) null-null-additive if 𝑚𝑚(𝐴𝐴 ∪ 𝐵𝐵) = 0, for every sets 𝐴𝐴,𝐵𝐵 ∈ 𝒞𝒞, satisfying the 
condition 𝑚𝑚(𝐴𝐴) = 𝑚𝑚(𝐵𝐵) = 0; 
(iii) diffused if 𝑚𝑚({𝑡𝑡}) = 0, whenever {𝑡𝑡} ∈ 𝒞𝒞; 
(iv) monotone if 𝑚𝑚(𝐴𝐴) ≤ 𝑚𝑚(𝐵𝐵), for every sets  𝐴𝐴,𝐵𝐵 ∈ 𝒞𝒞, so that 𝐴𝐴 ⊆ 𝐵𝐵; 
(v) null-monotone if for every two sets 𝐴𝐴,𝐵𝐵 ∈ 𝒞𝒞, having the property that 𝐴𝐴 ⊆
𝐵𝐵, if 𝑚𝑚(𝐵𝐵) = 0 holds, then one necessarily has also 𝑚𝑚(𝐴𝐴) = 0; 
(vi) finitely additive if 𝑚𝑚(𝐴𝐴 ∪ 𝐵𝐵) = 𝑚𝑚(𝐴𝐴) + 𝜈𝜈(𝐵𝐵), for every disjoint sets 𝐴𝐴,𝐵𝐵 ∈
𝒞𝒞;  
(vii) subadditive if 𝑚𝑚(𝐴𝐴 ∪ 𝐵𝐵) ≤ 𝑚𝑚(𝐴𝐴) + 𝜈𝜈(𝐵𝐵) , for every (disjoint or not) 
𝐴𝐴,𝐵𝐵 ∈ 𝒞𝒞. 
 
Example. (i) Let us suppose that   𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑛𝑛} , where for every  𝑖𝑖 ∈
{1,2, . . . ,𝑛𝑛},  𝑡𝑡𝑖𝑖 represents a particle, and 𝑚𝑚:𝒫𝒫(𝑇𝑇) → ℝ+  is a set function 
representing the mass of the particle. In the macrosopic world, 𝑚𝑚 is a finitely 
additive set function. At quantum scale, however, this statement no longer 
remains valid due to the phenomena of annihilation. For instance, if 𝑡𝑡1 and 𝑡𝑡2 
represents an electron and a positron, respectively, then 𝑚𝑚({𝑡𝑡1}) = 𝑚𝑚({𝑡𝑡2}) =
9,11 × 10−31𝑘𝑘𝑘𝑘, but 𝑚𝑚({𝑡𝑡1, 𝑡𝑡2}) = 𝑚𝑚({𝑡𝑡1} ∪ {𝑡𝑡2}) = 0; 
(ii) Entropy in Shannon’s sense is a subadditive set function, taking real values 
(Gavriluț and Agop, 2016; Gavriluț, 2019).  
 
In the following, we shall present several types of atoms in their  mathematical 
meaning, we shall establish some relationships among these types of atoms and 
we shall also highlight several possible interpretations. 
 
Unless stated otherwise, 𝒞𝒞  will represent a ring of subsets of an arbitrary 
nonvoid set 𝑇𝑇  and 𝑚𝑚:𝒞𝒞 → ℝ+,  an arbitrary set function satisfying the 
condition  𝑚𝑚(∅) = 0.  
 
These are the main types of atoms from a mathematical perspective: 
 
I. A set 𝐴𝐴 ∈ 𝒞𝒞 is called an atom of  𝑚𝑚  if 𝑚𝑚(𝐴𝐴) > 0  and for every 𝐵𝐵 ∈ 𝒞𝒞, with 
𝐵𝐵 ⊆ 𝐴𝐴, it holds either  𝑚𝑚(𝐵𝐵) = 0 or 𝑚𝑚(𝐴𝐴\𝐵𝐵) = 0. 
We observe that, in a certain sense, an atom is a special set, of strictly positive 
,,measure”, having additionally the property that any of its subsets either has 
zero ,,measure”, or the difference set between the initial set and its subset we 
refer to has zero ,,measure”.  
 

An atom can be interpreted, from a physics viewpoint, as the correspondent of a 
black hole. 
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II. The set function 𝑚𝑚 is said to be non-atomic if it has no atoms, that is, for 
every set 𝐴𝐴 ∈ 𝒞𝒞  with 𝑚𝑚(𝐴𝐴) > 0, there exists a subset 𝐵𝐵 ∈ 𝒞𝒞 (𝐵𝐵 ⊆ 𝐴𝐴) so that 
𝑚𝑚(𝐵𝐵) > 0 and 𝑚𝑚(𝐴𝐴\𝐵𝐵) > 0. 
 
III. A set 𝐴𝐴 ∈ 𝒞𝒞  is called a pseudo-atom of 𝑚𝑚  if  𝑚𝑚(𝐴𝐴) > 0 and for every 
subset  𝐵𝐵 ∈ 𝒞𝒞 (𝐵𝐵 ⊆ 𝐴𝐴)  one has either  𝑚𝑚(𝐵𝐵) = 0 or 𝑚𝑚(𝐵𝐵) = 𝑚𝑚(𝐴𝐴). 
In other words, a pseudo-atom is a special set, of strictly positive ,,measure”, 
for which any of its subsets either has null ,,measure”, or has the same 
,,measure” as the set itself. Thus, it can be stated that a pseudo-atom possesses 
the property that any of its subsets either has null ,,measure” (that is, it is 
negligible during the ,,measurement” process), or it entirely ,,covers” the set 
(during the same ,,measurement” process). 
In other words, assuming that the set function 𝑚𝑚 is monotone, then a pseudo-
atom is a set of strictly positive ,,measure” and which does not contain any 
proper subset of strictly smaller and strictly positive ,,measure”. 
 
IV. The set function 𝑚𝑚  is said to be non-pseudo-atomic if it does not have 
pseudo-atoms, that is, for any set 𝐴𝐴 ∈ 𝒞𝒞 with 𝑚𝑚(𝐴𝐴) > 0, there exists a subset 
𝐵𝐵 ∈ 𝒞𝒞 (𝐵𝐵 ⊆ 𝐴𝐴) so that 𝑚𝑚(𝐵𝐵) > 0 and 𝑚𝑚(𝐵𝐵) ≠ 𝑚𝑚(𝐴𝐴).  
 
For instance, the Lebesgue measure on the real line is a measure (in the classic 
sense) which is non-pseudo-atomic (Royden, 1988), and therefore it does not 
have any pseudo-atom. 
 
The non-pseudo-atomic measures satisfy the following remarkable property, 
which we owe to Sierpinski, a property which states that if 𝑚𝑚 is a non-pseudo-
atomic measure (in classic sense), defined on a 𝜎𝜎-algebra 𝒜𝒜 (of subsets of an 
abstract space 𝑇𝑇), and 𝐴𝐴 ∈ 𝒜𝒜  is an arbitrary set so that 𝑚𝑚(𝐴𝐴) > 0, then for 
every element 𝑏𝑏 ∈ [0,𝑚𝑚(𝐴𝐴)] , there exists a set 𝐵𝐵 ∈ 𝒜𝒜 , so that 𝐵𝐵 ⊆ 𝐴𝐴  and 
𝑚𝑚(𝐵𝐵) = 𝑏𝑏 (in other words, the set function 𝑚𝑚 takes a continuum of values, and 
thus it does not omit any intermediate value). 
 
V. A set function 𝑚𝑚 is called purely-atomic if the space 𝑇𝑇 can be represented as 
a finite or countable union of atoms of 𝑚𝑚. 
 
Examples. (i) Let be the set 𝑇𝑇 = {1,2, . . . ,9} . We define the set function 
𝑚𝑚:𝒫𝒫(𝑇𝑇) → ℝ+ as follows: ∀𝐴𝐴 ⊆ 𝑇𝑇,𝑚𝑚(𝐴𝐴) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴. Then ∀𝑖𝑖 ∈ {1,2, . . . ,9}, the 
singleton {𝑖𝑖}  is an atom of 𝑚𝑚 . Indeed, ∀𝑖𝑖 ∈ {1,2, . . . ,9},𝑚𝑚({𝑖𝑖}) = 1 > 0  and 
∀𝐵𝐵 ⊆ {𝑖𝑖}, we have either 𝐵𝐵 = ∅, in which case 𝑚𝑚(𝐵𝐵) = 0, or 𝐵𝐵 = {𝑖𝑖} in which 
case 𝑚𝑚({𝑖𝑖}\𝐵𝐵) = 𝑚𝑚(∅) = 0. 
Consequently, in this case, any singleton is an atom. 
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(ii) Generally, there is no relationship between the notion of an atom and that of 
a pseudo-atom: 
Let us consider an abstract set 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2} constituted of two distinct arbitrary 
elements and let also be the set function 𝑚𝑚:𝒫𝒫(𝑇𝑇) → ℝ+ defined for every 𝐴𝐴 ⊂

𝑇𝑇 by 𝑚𝑚(𝐴𝐴) = �
2, if 𝐴𝐴 = 𝑇𝑇
1,  if 𝐴𝐴 = {𝑡𝑡1}
0,  if 𝐴𝐴 = {𝑡𝑡2} or 𝐴𝐴 = ∅.

 

Then 𝑇𝑇 is an atom and it is not a pseudo-atom for  𝑚𝑚. 
Indeed, 𝑚𝑚(𝑇𝑇) = 2 > 0. Let be an arbitrary subset 𝐵𝐵 of 𝑇𝑇. 
If 𝐵𝐵 = ∅, then 𝑚𝑚(𝐵𝐵) = 0; 
If𝐵𝐵 = {𝑡𝑡1}, then, by the definition, 𝑚𝑚(𝑇𝑇\𝐵𝐵) = 𝑚𝑚({𝑡𝑡2}) = 0; 
If𝐵𝐵 = {𝑡𝑡2}, then, by the definition, 𝑚𝑚(𝐵𝐵) = 0; 
If𝐵𝐵 = {𝑡𝑡1, 𝑡𝑡2}(= 𝑇𝑇), then 𝑚𝑚(𝑇𝑇\𝐵𝐵) = 𝑚𝑚(∅) = 0. 
Therefore, 𝑇𝑇 is indeed an atom of 𝑚𝑚. 
On the other hand, let us note that there exists the singleton {𝑡𝑡1} for which 
𝑚𝑚({𝑡𝑡1}) = 1 ≠ 0  and 𝑚𝑚({𝑡𝑡1}) = 1 ≠ 2 = 𝑚𝑚(𝑇𝑇).  Consequently, 𝑇𝑇  is not a 
pseudo-atom of  𝑚𝑚. 
However, we note that, if the set function 𝑚𝑚 is null-addtive, then any atom of  𝑚𝑚 
is a pseudo-atom (*). 
 
Indeed, let us assume that 𝑚𝑚:𝒞𝒞 → ℝ+ is a null-additive set function, and that 
the set 𝐴𝐴 ∈ 𝒞𝒞 is an atom of 𝑚𝑚. We shall prove that 𝐴𝐴 is also a pseudo-atom of 
𝑚𝑚: 
Obviously, since 𝐴𝐴 este atom, then 𝑚𝑚(𝐴𝐴) > 0. Then, if we consider an arbitrary 
set 𝐵𝐵 ∈ 𝒞𝒞, with 𝐵𝐵 ⊆ 𝐴𝐴, from the fact that 𝐴𝐴 is an atom it follows that either 
𝑚𝑚(𝐵𝐵) = 0  or 𝑚𝑚(𝐴𝐴\𝐵𝐵) = 0 . In the latter case, because 𝑚𝑚  is null-additive, it 
follows that 𝑚𝑚(𝐴𝐴) = 𝑚𝑚((𝐴𝐴\𝐵𝐵) ∪ 𝐵𝐵) = 𝑚𝑚(𝐵𝐵).  Consequently, 𝐴𝐴  is a pseudo-
atom of 𝑚𝑚. 
 
Conversely, if the set function 𝑚𝑚:𝒞𝒞 → ℝ+ is, moreover, finitely additive, then 
any pseudo-atom 𝐴𝐴 ∈ 𝒞𝒞 of 𝑚𝑚 is an atom, too, and this immediately yields based 
on the equality 𝑚𝑚(𝐴𝐴) = 𝑚𝑚((𝐴𝐴\𝐵𝐵) ∪ 𝐵𝐵) = 𝑚𝑚(𝐴𝐴\𝐵𝐵) + 𝑚𝑚(𝐵𝐵) = 𝑚𝑚(𝐵𝐵) , which 
implies 𝑚𝑚(𝐴𝐴\𝐵𝐵) = 0. 
That is why, in the framework of the classic measure theory (a measure always 
possesses the null-additive property), the notions of an atom and that of a 
pseudo-atom coincide.  
 
The converse of the above statement (*) does not generally hold since there 
exist pseudo-atoms which are not atoms, as the following example will show: 
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(ii) Let 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2}  be an abstract set, containing two arbitrary elements, and 
let us consider the set function 𝑚𝑚:𝒫𝒫(𝑇𝑇) → ℝ+, defined for every set 𝐴𝐴 ⊆ 𝑇𝑇, by 

𝑚𝑚(𝐴𝐴) = �1, if 𝐴𝐴 ≠ ∅
0, if 𝐴𝐴 = ∅. 

Then 𝑚𝑚 is null-additive and 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2} is a pseudo-atom of 𝑚𝑚, but it is not an 
atom of 𝑚𝑚. 
Let 𝐴𝐴,𝐵𝐵 ⊆ 𝑇𝑇 be so that 𝑚𝑚(𝐵𝐵) = 0. By the definition of 𝑚𝑚 we note that we must 
necessarily have 𝐵𝐵 = ∅, whence 𝑚𝑚(𝐴𝐴 ∪ 𝐵𝐵) = 𝑚𝑚(𝐴𝐴), and this proves that the set 
function 𝑚𝑚 is null-additive. 
We prove now that 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2}  is a pseudo-atom of 𝑚𝑚 . Indeed, we have 
𝑚𝑚(𝑇𝑇) = 1 > 0 and let 𝐵𝐵 ⊆ 𝑇𝑇 an arbitrary subset. 
If 𝐵𝐵 = ∅, then 𝑚𝑚(𝐵𝐵) = 0. 
If 𝐵𝐵 ≠ ∅, then the set 𝐵𝐵 either is a singleton, or is the set T, itself consisting of 
two elements. In both situations, one has 𝑚𝑚(𝑇𝑇) = 1 = 𝑚𝑚(𝐵𝐵), which proves that 
𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2} is a pseudo-atom of 𝑚𝑚. 
Let us prove now that 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2} is not an atom of 𝑚𝑚. Indeed, 𝑚𝑚(𝑇𝑇) = 1 > 0 
and there exists the singleton {𝑡𝑡1}  for which we have 𝑚𝑚({𝑡𝑡1}) = 1 ≠ 0  and 
𝑚𝑚(𝑇𝑇\{𝑡𝑡1}) = 𝑚𝑚({𝑡𝑡2}) = 1 ≠ 0. Therefore, 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2} is not an atom of 𝑚𝑚. 
 
(iii) The Dirac measure (or, the unit mass measure) (or, the 𝛿𝛿 -measure) 𝛿𝛿𝑡𝑡 
concentrated in an arbitrary fixed point 𝑡𝑡 of an abstract set 𝑇𝑇, is an example of a 
measure (in the classical sense) which is purely-atomic (Kadets, 2018). 
 
The Dirac measure is defined as follows: 

If 𝒜𝒜 is a 𝜎𝜎-algebra of subsets of 𝑇𝑇, then 𝛿𝛿𝑡𝑡(𝐴𝐴) = �1, 𝑡𝑡 ∈ 𝐴𝐴
0, 𝑡𝑡 ∉ 𝐴𝐴 ,∀𝐴𝐴 ∈ 𝒜𝒜. 

Obvioulsy, 𝑇𝑇  is an atom of 𝛿𝛿𝑡𝑡  (because 𝛿𝛿𝑡𝑡(𝑇𝑇) = 1 > 0  and ∀𝐴𝐴 ∈ 𝒜𝒜,  it holds 
either 𝛿𝛿𝑡𝑡(𝐴𝐴) = 0 or 𝛿𝛿𝑡𝑡(𝑐𝑐𝐴𝐴) = 0, as 𝑡𝑡 ∉ 𝐴𝐴 or 𝑡𝑡 ∈ 𝐴𝐴, that is, 𝑡𝑡 ∉ 𝑐𝑐𝐴𝐴). 
 
Let us recall now the following: 
If 𝒞𝒞 is a ring of subsets of an abstract space 𝑇𝑇 and if 𝑚𝑚:𝒞𝒞 → ℝ+ is a set function 
satisfying the condition 𝑚𝑚(∅) = 0, two sets  𝐴𝐴1,𝐴𝐴2 are said to be equivalent if 
𝑚𝑚(𝐴𝐴1Δ𝐴𝐴2) = 0. 
 
We note that if the set function 𝑚𝑚  is additionally null-monotone and null-
additive, then 𝑚𝑚(𝐴𝐴1) = 𝑚𝑚(𝐴𝐴2)  (which justifies the terminology, since the 
equivalence of the sets takes place in the sense of the ,,measurement” process). 
 
Indeed, since 𝑚𝑚(𝐴𝐴1Δ𝐴𝐴2) = 𝑚𝑚((𝐴𝐴1\𝐴𝐴2) ∪ (𝐴𝐴2\𝐴𝐴1)) = 0  and 𝑚𝑚  is null-
monotone, it follows that 𝑚𝑚(𝐴𝐴1\𝐴𝐴2) = 0 and 𝑚𝑚(𝐴𝐴2\𝐴𝐴1) = 0, whence, because 
𝑚𝑚  is null-additive and 𝑚𝑚(𝐴𝐴1) = 𝑚𝑚((𝐴𝐴1\𝐴𝐴2) ∪ (𝐴𝐴1 ∩ 𝐴𝐴2)) = 𝑚𝑚(𝐴𝐴1 ∩
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𝐴𝐴2),𝑚𝑚(𝐴𝐴2) = 𝑚𝑚((𝐴𝐴2\𝐴𝐴1) ∪ (𝐴𝐴1 ∩ 𝐴𝐴2)) = 𝑚𝑚(𝐴𝐴1 ∩ 𝐴𝐴2) it follows that 
𝑚𝑚(𝐴𝐴1) = 𝑚𝑚(𝐴𝐴2). 
 
We note that, with respect to the Dirac measure 𝛿𝛿𝑡𝑡 , the atom 𝑇𝑇 (the space itself, 
unreduced to a single point) is equivalent to the singleton {𝑡𝑡}, 𝑡𝑡 ∈ 𝑇𝑇 (Kadets, 
2018). Indeed, we have 𝑚𝑚(𝑇𝑇Δ{𝑡𝑡}) = 0 (so, with respect to the Dirac measure, 
the space ,,collapses” into a single point). 
 
We shall prove in the following that, with respect to a monotone and null-
additive set function, any set which is equivalent to an atom is itself an atom: 
Let us assume that the set 𝐴𝐴1 is an atom and we prove that the set 𝐴𝐴2,  which is 
equivalent to the set 𝐴𝐴1, possesses the same property. Indeed, according to the 
above statements, we have 𝑚𝑚(𝐴𝐴2) = 𝑚𝑚(𝐴𝐴1) > 0  and let 𝐵𝐵 ∈ 𝒞𝒞,𝐵𝐵 ⊆ 𝐴𝐴 , be 
arbitrary. 
If 𝑚𝑚(𝐵𝐵) = 0, then the proof ends. 
If 𝑚𝑚(𝐴𝐴1\𝐵𝐵) = 0, then, since 𝑚𝑚 is monotone and 𝑚𝑚(𝐴𝐴1Δ𝐴𝐴2) = 0, it follows that 
𝑚𝑚(𝐴𝐴2\𝐴𝐴1) = 0. 
On the other hand, again from the monotonicity of 𝑚𝑚 we have 𝑚𝑚(𝐴𝐴2\𝐵𝐵) ≤
𝑚𝑚((𝐴𝐴2\𝐴𝐴1) ∪ (𝐴𝐴1\𝐵𝐵)) = 𝑚𝑚(𝐴𝐴1\𝐵𝐵) = 0, based also on the fact that 𝑚𝑚 is null-
additive and 𝑚𝑚(𝐴𝐴2\𝐴𝐴1) = 0.  Consequently, 𝑚𝑚(𝐴𝐴2\𝐵𝐵) = 0 , and this finally 
proves that 𝐴𝐴2 is an atom of 𝑚𝑚, too. 
 
Let us also note that, with respect to a monotone and null-additive set function, 
any set which is equivalent to a pseudo-atom is, itself, a pseudo-atom: 
Let us assume that the set 𝐴𝐴1 is a pseudo-atom and we prove that the set 𝐴𝐴2, 
which is equivalent to the set 𝐴𝐴1, possesses the same property. Indeed, from the 
above statements, we have 𝑚𝑚(𝐴𝐴2) = 𝑚𝑚(𝐴𝐴1) > 0  and let 𝐵𝐵 ∈ 𝒞𝒞,𝐵𝐵 ⊆ 𝐴𝐴 , be 
arbitrary. 
If 𝑚𝑚(𝐵𝐵) = 0, then the proof ends. 
If 𝑚𝑚(𝐴𝐴1) = 𝑚𝑚(𝐵𝐵), then, since 𝑚𝑚(𝐴𝐴2) = 𝑚𝑚(𝐴𝐴1) = 𝑚𝑚(𝐵𝐵), it follows that 𝐴𝐴2 is 
also a pseudo-atom of 𝑚𝑚. 
 
Next, we shall underline the fact that both the notion of atom and that of 
pseudo-atom (in the mathematical sense) possess a remarkable property, namely 
that of self-similarity (every part reflects the whole), a property which is a 
characteristic to fractals, both from a mathematical point of view and from the 
perspective of modern physics. This finding, among others, justifies the 
extension we illustrate in the last section, in which we address the necessity to 
introduce the notion of a fractal atom (Gavriluţ et al., 2019a). 



48                                                               Alina Gavriluţ 
 

 

The self-similarity property of the atoms (pseudo-atoms, respectively) 
(i) If 𝑚𝑚:𝒞𝒞 → ℝ+ is a null-monotone set function, with 𝑚𝑚(∅) = 0,𝐴𝐴 ∈ 𝒞𝒞 is an 
atom of 𝑚𝑚 and 𝐵𝐵 ∈ 𝒞𝒞 is a subset of 𝐴𝐴 having the property 𝑚𝑚(𝐵𝐵) > 0, then 𝐵𝐵 is 
also an atom of 𝑚𝑚 and, moreover, 𝑚𝑚(𝐴𝐴\𝐵𝐵) = 0. 
(which means that the ,,measure” of what remains when the set  𝐵𝐵 is removed 
from the set 𝐴𝐴 is null). 
Indeed, one has 𝑚𝑚(𝐵𝐵) > 0 and if we consider an arbitrary set 𝐶𝐶 ∈ 𝒞𝒞, with 𝐶𝐶 ⊆
𝐵𝐵, then, since 𝐵𝐵 ⊆ 𝐴𝐴, it follows that 𝐶𝐶 ⊆ 𝐴𝐴. 
If 𝑚𝑚(𝐶𝐶) = 0, the proof ends. 
Let us assume now that 𝑚𝑚(𝐶𝐶) ≠ 0 . Because 𝐴𝐴 ∈ 𝒞𝒞  is an atom al lui 𝑚𝑚,  it 
follows that 𝑚𝑚(𝐴𝐴\𝐶𝐶) = 0. 
Since 𝐵𝐵\𝐶𝐶 ⊆ 𝐴𝐴\𝐶𝐶  and 𝑚𝑚  is null-monotone it gets that 𝑚𝑚(𝐵𝐵\𝐶𝐶) = 0  and, 
therefore, 𝐵𝐵 is an atom of 𝑚𝑚. 
Moreover, since 𝐴𝐴 ∈ 𝒞𝒞  is an atom of 𝑚𝑚 and 𝐵𝐵 ∈ 𝒞𝒞  is a subset satisfying the 
property 𝑚𝑚(𝐵𝐵) > 0, then we must necessarily have 𝑚𝑚(𝐴𝐴\𝐵𝐵) = 0. 
 
(ii) If 𝐴𝐴 ∈ 𝒞𝒞  is a pseudo-atom of 𝑚𝑚  and the set 𝐵𝐵 ∈ 𝒞𝒞  satisfies 𝐵𝐵 ⊆ 𝐴𝐴  and 
𝑚𝑚(𝐵𝐵) > 0, then 𝐵𝐵 is also a pseudo-atom of 𝑚𝑚 and, moreover, 𝑚𝑚(𝐵𝐵) = 𝑚𝑚(𝐴𝐴). 
(which means that the sets 𝐴𝐴 are 𝐵𝐵 are ,,identical” with respect to the ,,measure” 
𝑚𝑚). 
Indeed, we have 𝑚𝑚(𝐵𝐵) > 0 and, if we consider an arbitrary set 𝐶𝐶 ∈ 𝒞𝒞, with 𝐶𝐶 ⊆
𝐵𝐵, then, since 𝐵𝐵 ⊆ 𝐴𝐴, it follows that 𝐶𝐶 ⊆ 𝐴𝐴. 
If 𝑚𝑚(𝐶𝐶) = 0, the proof ends. 
Let us assume now that 𝑚𝑚(𝐶𝐶) ≠ 0 . Since 𝐴𝐴 ∈ 𝒞𝒞  is a pseudo-atom of 𝑚𝑚,  it 
follows that 𝑚𝑚(𝐴𝐴) = 𝑚𝑚(𝐶𝐶). 
On the other hand, since 𝐴𝐴 ∈ 𝒞𝒞 is a pseudo-atom of 𝑚𝑚, the set 𝐵𝐵 ∈ 𝒞𝒞 satisfies 
𝐵𝐵 ⊆ 𝐴𝐴 and 𝑚𝑚(𝐵𝐵) > 0, then 𝑚𝑚(𝐵𝐵) = 𝑚𝑚(𝐴𝐴). 
In consequence, 𝑚𝑚(𝐵𝐵) = 𝑚𝑚(𝐶𝐶), and this finally proves that 𝐵𝐵 is also a pseudo-
atom of 𝑚𝑚. 
 
Let us make, at the end of this section, the following observation: 
Assuming that a set function 𝑚𝑚:𝒞𝒞 → ℝ+ is monotone, null-additive and regular 
(meaning that, roughly speaking, we can, through it, approximate sets about 
which we have little information, with sets about which we have more 
information), one can prove that for each atom 𝐴𝐴 of 𝑚𝑚 (if it exists), there exists 
a unique element 𝑐𝑐 ∈ 𝐴𝐴 so that 𝑚𝑚(𝐴𝐴) = 𝑚𝑚({𝑐𝑐}) (Pap, 1995b) (this means that 
the ,,measure” of the atom is equal to the measure of each ,,point” it contains, 
and this reflects the holographic perspective, according to which the 
information is concentrated in a single point. 
        
We shall now introduce a very special category of atoms, which we show to 
reflect the property of indivisibility (non-decomposability). 
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Let 𝒞𝒞 be an arbitrary ring of subsets of an abstract space 𝑇𝑇 and let 𝑚𝑚:𝒞𝒞 → ℝ+ 
be a set function so that 𝑚𝑚(∅) = 0. 
 
A set  𝐴𝐴 ∈ 𝒞𝒞  is called a minimal atom of 𝑚𝑚  if  𝑚𝑚(𝐴𝐴) > 0  and for every 
subset  𝐵𝐵 ∈ 𝒞𝒞  (𝐵𝐵 ⊆ 𝐴𝐴) it holds either   𝑚𝑚(𝐵𝐵) = 0,  or  𝐵𝐵 = 𝐴𝐴 (Ouyang et al., 
2015). 
In other words, a minimal atom is a special set, of stricly positive ,,measure”, 
so that any of its subsets has either zero ,,measure”, or identifies with the set 
itself. Thus, a minimal atom has the property that any of its subsets has either 
zero ,,measure” (that is, it is negligible during the  ,,measurement” process), or 
identifies with the initial set (without the need of a ,,measurement” process).  
 
Let us note that the terminology is justified. Indeed, if 𝐴𝐴 ∈ 𝒞𝒞 is a minimal atom 
of 𝑚𝑚 , then for 𝑚𝑚  there cannot exist other minimal atom 𝐴𝐴1 ∈ 𝒞𝒞 , which is 
different from 𝐴𝐴 and satisfies 𝐴𝐴1 ⊂ 𝐴𝐴. 
Indeed, if we assume, on the contrary, that there exists another minimal atom 
𝐴𝐴1 ∈ 𝒞𝒞  which is different from 𝐴𝐴  and satisfies 𝐴𝐴1 ⊂ 𝐴𝐴 , then, since 𝐴𝐴1  is a 
minimal atom, we get that 𝑚𝑚(𝐴𝐴1) > 0. Because 𝐴𝐴1 ⊊ 𝐴𝐴, then 𝐴𝐴1 = 𝐴𝐴, and this 
is false due to the assumption we made. 
 
Example. Let 𝑇𝑇 = {𝑐𝑐, 𝑏𝑏, 𝑐𝑐,𝑐𝑐}  be an abstract set, constituted of four distinct 
elements and let also be the set function  𝑚𝑚:𝒫𝒫(𝑇𝑇) → ℝ+, defined for every  𝐴𝐴 ⊆

𝑇𝑇 by 𝑚𝑚(𝐴𝐴) = �
5, if 𝐴𝐴 = 𝑇𝑇
2, if 𝐴𝐴 ≠ 𝑇𝑇
0, if 𝐴𝐴 = ∅.

 

We note that any singleton (i.e., a set containing only one element) is a minimal 
atom of 𝑚𝑚 . Indeed, the ,,measure” 𝑚𝑚  of any singleton is, according to the 
definition, 2, so it is strictly positive and any subset is either void and hence has 
zero measure, or is the set itself. 
 
We note that, in general, any minimal atom is, particularly, an atom and also a 
pseudo-atom. 
Indeed, if 𝐴𝐴 ∈ 𝒞𝒞  is a minimal atom of 𝑚𝑚, then 𝑚𝑚(𝐴𝐴) > 0 and for any of its 
subset 𝐵𝐵 ∈ 𝒞𝒞 (𝐵𝐵 ⊆ 𝐴𝐴)  it holds either 𝑚𝑚(𝐵𝐵) = 0, or 𝐵𝐵 = 𝐴𝐴. The latter posibility 
yields 𝑚𝑚(𝐴𝐴\𝐵𝐵) = 0 and 𝑚𝑚(𝐵𝐵) = 𝑚𝑚(𝐴𝐴), so 𝐴𝐴 is both an atom and a pseudo-
atom of 𝑚𝑚. 
 
The following examples highlight the fact that there exists generally no 
relationship between the notions of atom/pseudo-atom and that of minimal 
atom: 
 
Examples. (i) Let  𝑇𝑇 = {𝑐𝑐, 𝑏𝑏}  be an abstract set constituted of two distinct 
elements and let also be the set function 𝑚𝑚:𝒫𝒫(𝑇𝑇) → ℝ+ defined as follows: 
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∀𝐴𝐴 ⊆ 𝑇𝑇,𝑚𝑚(𝐴𝐴) = �1, if 𝐴𝐴 = {𝑐𝑐} or 𝐴𝐴 = 𝑇𝑇
0, otherwise.  

Then 𝑇𝑇 is an atom of 𝑚𝑚: 
Obviously, 𝑚𝑚(𝑇𝑇) = 1 > 0. Let 𝐵𝐵 ⊆ 𝑇𝑇 be an arbitrary set. 
If 𝐵𝐵 = ∅, then 𝑚𝑚(𝐵𝐵) = 0. 
If 𝐵𝐵 = {𝑐𝑐}, then 𝑚𝑚(𝑇𝑇\𝐵𝐵) = 𝑚𝑚({𝑏𝑏}) = 0. 
If 𝐵𝐵 = {𝑏𝑏}, then 𝑚𝑚(𝐵𝐵) = 0. 
If 𝐵𝐵 = 𝑇𝑇 = {𝑐𝑐, 𝑏𝑏}, then 𝑚𝑚(𝑇𝑇\𝐵𝐵) = 𝑚𝑚(∅) = 0. 
But 𝑇𝑇 is not a minimal atom of 𝑚𝑚: 
Obviously, one has 𝑚𝑚(𝑇𝑇) = 1 > 0  and let 𝐵𝐵 ⊆ 𝑇𝑇  be an arbitrary set. We 
observe that there exists the set 𝐵𝐵 = {𝑐𝑐} ≠ 𝑇𝑇 for which 𝑚𝑚(𝐵𝐵) = 1 ≠ 0. 
We also note that the set {𝑐𝑐} is an atom (we have 𝑚𝑚({𝑐𝑐}) = 1 > 0 and any 
subset 𝐵𝐵 ⊆ {𝑐𝑐} either is void, so 𝑚𝑚(𝐵𝐵) = 0, or is the set {𝑐𝑐} itself, so 𝑚𝑚({𝑐𝑐}\
{𝑐𝑐}) = 0). The set {𝑐𝑐} is also a minimal atom of 𝑚𝑚 since 𝑚𝑚({𝑐𝑐}) = 1 > 0 and 
any subset 𝐵𝐵 ⊆ {𝑐𝑐} either is void, so 𝑚𝑚(𝐵𝐵) = 0, or is {𝑐𝑐} itself. 
 
(ii) Let 𝑇𝑇 = {𝑐𝑐, 𝑏𝑏, 𝑐𝑐,𝑐𝑐}  be an abstract set constituted of four distinct elements 
and let also be the set function 𝑚𝑚:𝒫𝒫(𝑇𝑇) → ℝ+, defined as follows: ∀𝐴𝐴 ⊆ 𝑇𝑇, 

𝑚𝑚(𝐴𝐴) = �

5, if 𝐴𝐴 = 𝑇𝑇
3, if 𝐴𝐴 = {𝑐𝑐, 𝑏𝑏, 𝑐𝑐}  or 𝐴𝐴 = {𝑐𝑐, 𝑏𝑏, 𝑐𝑐} or 𝐴𝐴 = {𝑐𝑐, 𝑐𝑐,𝑐𝑐}
2,  if 𝐴𝐴 = {𝑐𝑐, 𝑏𝑏} or 𝐴𝐴 = {𝑐𝑐, 𝑐𝑐}
0, otherwise.

 

Then {𝑐𝑐, 𝑏𝑏} and  {𝑐𝑐, 𝑐𝑐} are minimal atoms of 𝑚𝑚. We shall prove the statement, 
for instance, for the {𝑐𝑐, 𝑏𝑏}: 
Indeed,  we have 𝑚𝑚({𝑐𝑐, 𝑏𝑏}) = 2 > 0 and let 𝐵𝐵  be an arbitrary subset. 
If 𝐵𝐵 = {𝑐𝑐, 𝑏𝑏}, the statement is verified. 
If 𝐵𝐵 = {𝑐𝑐} or 𝐵𝐵 = {𝑏𝑏}, then, according to the definition, we have 𝑚𝑚({𝑐𝑐}) =
𝑚𝑚({𝑏𝑏}) = 0, so the statement is again verified. 
If 𝐵𝐵 = ∅, then 𝑚𝑚(𝐵𝐵) = 0. 
 
In the following, let us note that if 𝑚𝑚:𝒞𝒞 → ℝ+  is a null-null-additive set 
function and 𝐴𝐴,𝐵𝐵 ∈ 𝒞𝒞 are two different minimal atoms of 𝑚𝑚, then they must be 
necessarily disjoint, that is, 𝐴𝐴 ∩ 𝐵𝐵 = ∅. 
Indeed, let us assume that, on the contrary, 𝐴𝐴 ∩ 𝐵𝐵 ≠ ∅. Since 𝐴𝐴,𝐵𝐵 ∈ 𝒞𝒞 are two 
minimal atoms of 𝑚𝑚, 𝐴𝐴 \(𝐴𝐴 ∩ 𝐵𝐵) = 𝐴𝐴 \𝐵𝐵 ⊆ 𝐴𝐴 and 𝐴𝐴 ∩ 𝐵𝐵 ⊆ 𝐵𝐵, it follows that 
[𝑚𝑚(𝐴𝐴 \𝐵𝐵) = 0 or 𝐴𝐴\ 𝐵𝐵 = 𝐴𝐴] and [𝑚𝑚(𝐴𝐴 ∩ 𝐵𝐵) = 0 or 𝐴𝐴 ∩ 𝐵𝐵 = 𝐵𝐵]. 
(i) If 𝐴𝐴 \𝐵𝐵 = 𝐴𝐴 , then 𝐴𝐴 ∩ 𝐵𝐵 = ∅ , which is false since, according to our 
asumption, we have 𝐴𝐴 ∩ 𝐵𝐵 ≠ ∅. 
(ii) If 𝑚𝑚(𝐴𝐴 \𝐵𝐵) = 0  and 𝑚𝑚(𝐴𝐴 ∩ 𝐵𝐵) = 0 , then, since 𝑚𝑚  is null-null-additive, 
one gets that 𝑚𝑚(𝐴𝐴) = 𝑚𝑚((𝐴𝐴\ 𝐵𝐵) ∪ (𝐴𝐴 ∩ 𝐵𝐵)) = 0 , which is false, since 
𝑚𝑚(𝐴𝐴) > 0, the set 𝐴𝐴 being a minimal atom of 𝑚𝑚. 
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(iii) If 𝑚𝑚(𝐴𝐴 \𝐵𝐵) = 0  and 𝐴𝐴 ∩ 𝐵𝐵 = 𝐵𝐵 , then 𝐵𝐵 ⊆ 𝐴𝐴, so, since 𝐴𝐴  is a minimal 
atom of 𝑚𝑚, one gets from the above observation that 𝐵𝐵 = 𝐴𝐴, which is false. 
Consequently, 𝐴𝐴 ∩ 𝐵𝐵 = ∅. 
 
The property we shall demonstrate next reflects the non-decomposability (non-
partitionability) of the minimal atoms: 
A minimal atom  𝐴𝐴 ∈ 𝒞𝒞  of a null-null-additive set function 𝑚𝑚  cannot be 
partitioned in sets that are elements of 𝒞𝒞. Indeed, if we suppose, on the contrary, 
that there exists a partition of a lui 𝐴𝐴, this means that there exists  a family 

{𝐴𝐴𝑖𝑖}𝑖𝑖∈{1,2,...,𝑝𝑝}  of nonvoid sets of 𝒞𝒞  so that ∪
𝑝𝑝

𝑖𝑖=1
𝐴𝐴𝑖𝑖 = 𝐴𝐴  and the sets 𝐴𝐴𝑖𝑖  are 

pairwise disjoint. 
Referring to the first set 𝐴𝐴1, since 𝐴𝐴 ∈ 𝒞𝒞 is a minimal atom, it follows that we 
cannot have the situation 𝐴𝐴1 = 𝐴𝐴. Therefore, 𝑚𝑚(𝐴𝐴1) = 0. Analogously, for the 
second set, 𝐴𝐴2, we get that 𝑚𝑚(𝐴𝐴2) = 0. Recurrently, it gets that 𝑚𝑚(𝐴𝐴3) =. . . =

𝑚𝑚(𝐴𝐴𝑝𝑝) = 0. Since 𝑚𝑚 is null-null-additive, it follows that 𝑚𝑚(𝐴𝐴) = 𝑚𝑚( ∪
𝑝𝑝

𝑖𝑖=1
𝐴𝐴𝑖𝑖) =

0, which is obviously false. 
Consequently, any minimal atom is non- decomposable. 
 
In the following, we shall prove that the converse of this statement also holds, 
namely, we shall demonstrate that any non-decomposable atom 𝐴𝐴 ∈ 𝒞𝒞 is 
necessarily a minimal atom. Indeed, since the set 𝐴𝐴 is an atom, then 𝑚𝑚(𝐴𝐴) > 0. 
Since the set 𝐴𝐴  is not partitionable, there cannot exist two nonvoid disjoint 
subsets 𝐴𝐴1,𝐴𝐴2 ∈ 𝒞𝒞 of 𝐴𝐴 so that 𝐴𝐴 = 𝐴𝐴1 ∪ 𝐴𝐴2. 
Let be an arbitrary set 𝐵𝐵 ∈ 𝒞𝒞, with 𝐵𝐵 ⊆ 𝐴𝐴. 
If 𝑚𝑚(𝐵𝐵) = 0, then the proof ends. 
If 𝑚𝑚(𝐵𝐵) > 0, since 𝐵𝐵 ⊆ 𝐴𝐴, one gets that 𝐵𝐵 = 𝐴𝐴 (otherwise, the family {𝐴𝐴 \
𝐵𝐵,𝐵𝐵}  is a partition of 𝐴𝐴 : 𝐴𝐴 \𝐵𝐵,𝐵𝐵 ∈ 𝒞𝒞, (𝐴𝐴\ 𝐵𝐵) ∩ 𝐵𝐵 = ∅, (𝐴𝐴\ 𝐵𝐵) ∪ 𝐵𝐵 = 𝐴𝐴 , 
which is false). 
Consequently, 𝐴𝐴 is a minimal atom. 
 
From the two statements above, one arrives at the following conclusion: an 
atom is minimal if and only if it is not partitionable (it is non-decomposable).  
 
In the following, we shall highlight the fact that, in the case when the abstract 
set 𝑇𝑇 is finite, then any set  𝐴𝐴 ∈ 𝒞𝒞, satisfying the condition  𝑚𝑚(𝐴𝐴) > 0 possesses 
at least one set  𝐵𝐵 ∈ 𝒞𝒞,𝐵𝐵 ⊆ 𝐴𝐴,  which is a minimal atom minimal of  𝑚𝑚. 
Moreover, in the particular case when 𝐴𝐴 is an atom of 𝑚𝑚 and the set function 𝑚𝑚 
is null-additive, one gets that 𝑚𝑚(𝐴𝐴) = 𝑚𝑚(𝐵𝐵) and the set 𝐵𝐵 is unique. 
Indeed, let us consider the family of sets ℳ = {𝑀𝑀 ∈ 𝒞𝒞,𝑀𝑀 ⊆ 𝐴𝐴,𝑚𝑚(𝑀𝑀) > 0}. 
Obviously, since 𝐴𝐴 ∈ 𝒞𝒞, then ℳ ≠ ∅. 
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We note that any minimal element 𝑀𝑀 ∈ℳ  of  is a minimal atom of 𝑚𝑚 . 
Indeed, since 𝑀𝑀 is a minimal element, there cannot exist another set 𝐷𝐷 ∈ ℳ so 
that 𝐷𝐷 ⊊ 𝑀𝑀 (∗∗). 
Since 𝑀𝑀 ∈ ℳ, this means that 𝑀𝑀 ∈ 𝒞𝒞,𝑀𝑀 ⊆ 𝐴𝐴 and 𝑚𝑚(𝑀𝑀) > 0. 
We shall prove that 𝑀𝑀 is a minimal atom of 𝑚𝑚. Indeed, for any set 𝑆𝑆 ⊆ 𝑀𝑀, 𝑆𝑆 ∈
𝒞𝒞, we have either 𝑚𝑚(𝑆𝑆) = 0 or 𝑚𝑚(𝑆𝑆) > 0. In the latter case, we have either 𝑆𝑆 =
𝑀𝑀 (which is suitable) or 𝑆𝑆 ≠ 𝑀𝑀, which contradicts the statement (∗∗). 
Let us assume, moreover, that the set 𝐴𝐴 is an atom of 𝑚𝑚 and 𝑚𝑚 is null-additive. 
According to the considerations proved above, there exists at least one set 𝐵𝐵 ∈
𝒞𝒞,𝐵𝐵 ⊆ 𝐴𝐴,  which is a minimal atom of  𝑚𝑚.  This means that 𝑚𝑚(𝐵𝐵) > 0  and, 
because 𝐴𝐴 is an atom, we must necessarily have 𝑚𝑚(𝐴𝐴\𝐵𝐵) = 0. Since 𝑚𝑚 is null-
additive, this yields 𝑚𝑚(𝐴𝐴) = 𝑚𝑚((𝐴𝐴\𝐵𝐵) ∪ 𝐵𝐵) = 𝑚𝑚(𝐵𝐵). 
It only remains to prove that the set 𝐵𝐵 is unique. Indeed, if we suppose, on the 
contrary, that there exist two different minimal atoms 𝐵𝐵1  and 𝐵𝐵2  of 𝑚𝑚 , this 
would imply, as before, that 𝑚𝑚(𝐴𝐴\𝐵𝐵1) = 𝑚𝑚(𝐴𝐴\𝐵𝐵2) = 0. If 𝑚𝑚(𝐵𝐵1 ∩ 𝐵𝐵2) = 0, 
then 𝑚𝑚(𝐴𝐴) = 𝑚𝑚�𝐴𝐴\(𝐵𝐵1 ∩ 𝐵𝐵2) ∪ (𝐵𝐵1 ∩ 𝐵𝐵2)� = 𝑚𝑚�𝐴𝐴\(𝐵𝐵1 ∩ 𝐵𝐵2)� =
𝑚𝑚�(𝐴𝐴\𝐵𝐵1) ∪ (𝐴𝐴\𝐵𝐵2)�, which is false. 
If 𝑚𝑚(𝐵𝐵1 ∩ 𝐵𝐵2) > 0, since 𝐵𝐵1  and 𝐵𝐵2  are minimal atoms of 𝑚𝑚 , it results that 
𝐵𝐵1 = 𝐵𝐵1 ∩ 𝐵𝐵2 = 𝐵𝐵2, which is again false. 
 
Finally, we shall prove that, if the set 𝑇𝑇 is finite, the set function 𝑚𝑚 is null-
additive, and {𝐴𝐴𝑖𝑖}𝑖𝑖∈{1,2,…,𝑝𝑝} is the family of all different minimal atoms which 
are contained in a set 𝐴𝐴 ∈ 𝒞𝒞 , satisfying 𝑚𝑚(𝐴𝐴) > 0  (we proved in the above 

considerations that such atoms exist), then 𝑚𝑚(𝐴𝐴) = 𝑚𝑚� ∪
𝑝𝑝

𝑖𝑖=1
𝐴𝐴𝑖𝑖�. 

(This means that the set 𝐴𝐴 identifies itself, from the ,,measure” 𝑚𝑚 viewpoint, 
with the union of all different minimal atoms which it contains, therefore the 
minimal atoms are the only ones that matter from the ,,measurement” point of 
view).  

Let us note that 𝑚𝑚(𝐴𝐴 \ ∪
𝑝𝑝

𝑖𝑖=1
𝐴𝐴𝑖𝑖) = 0  (if, on the contrary, one has 𝑚𝑚(𝐴𝐴 \

∪
𝑝𝑝

𝑖𝑖=1
𝐴𝐴𝑖𝑖) > 0, from the statement proved above it would follow that there exists 

at least one set 𝐵𝐵 ∈ 𝒞𝒞,𝐵𝐵 ⊆ 𝐴𝐴\ ∪
𝑝𝑝

𝑖𝑖=1
𝐴𝐴𝑖𝑖 ⊆ 𝐴𝐴, which is a minimal atom of 𝑚𝑚, and 

this is false since 𝐴𝐴1, . . . ,𝐴𝐴𝑝𝑝 are the only different minimal atoms contained in 
𝐴𝐴). 

Since 𝑚𝑚(𝐴𝐴\ ∪
𝑝𝑝

𝑖𝑖=1
𝐴𝐴𝑖𝑖) = 0  and 𝑚𝑚  is null-additive, it follows that 𝑚𝑚(𝐴𝐴) =

𝑚𝑚((𝐴𝐴\ ∪
𝑝𝑝

𝑖𝑖=1
𝐴𝐴𝑖𝑖) ∪ ( ∪

𝑝𝑝

𝑖𝑖=1
𝐴𝐴𝑖𝑖)) = 𝑚𝑚( ∪

𝑝𝑝

𝑖𝑖=1
𝐴𝐴𝑖𝑖). 
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Let us finally note the following: 
 
1. Any minimal atom is also an atom and a pseudo-atom (which justifies the 
terminology); 
2. If the set function is null-additive, then any of its atoms is a pseudo-atom, 
too; 
3. If, moreover, the set function is finitely additive, then the converse of the 
above statement is also valid, therefore any pseudo-atom is particularly an atom. 
 
Consequently, for a finitely additive set function (which automatically 
possesses the null-additivity property), the notion of atom and that of pseudo-
atom coincide. We summarize all these observations in the following schematic: 
 
Minimal atom Atom 
 
 
 
 
  
                                       
                                                  
 
 
 
 
 
 
 
 
 

 Pseudo-atom 
 
Generalizations of the mathematical notion of an atom have been made, so far, 
in two major directions. A first direction is given by the fact that, instead of set 
functions, which are indispensable to the process of the so-called 
“measurement”, one could generally operate with set multifunctions (that is, 
functions that associate a set to another set).  

Thus, results with a higher degree of generalization and abstraction can 
be obtained. The second direction is given by the correlation that can be made 
by placing the notion of (minimal) atom within the fractal sets theory, thus 
resulting in the notion of fractal (minimal) atom (Gavriluț et al., 2019b; 
Gavriluţ and Agop, 2016). 

 
 
 
Null- 
additivity 

 
 
 
Finite 
additivity 
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In what follows, let be an abstract nonvoid set 𝑇𝑇, 𝒞𝒞 a ring of subsets of 𝑇𝑇, 𝑋𝑋 a 
real linear normed space with the origin 𝜃𝜃 and 𝒫𝒫0(𝑋𝑋), the family of all nonvoid 
subsets of 𝑋𝑋. By a set multifunction we mean a function (or, application) which 
associates a set to another set, in contrast with the notion of a function, which 
associates a point to another point. So, in what follows, let 𝜇𝜇:𝒞𝒞 → 𝒫𝒫0(𝑋𝑋) be an 
arbitrary set multifunction satisfying the condition 𝜇𝜇(∅) = 𝜃𝜃. 
  
The notions of atom, pseudo-atom, minimal atom introduced with respect to a 
set function 𝑚𝑚  can be generalized in this context, with respect to the set 
multifunction 𝜇𝜇, as follows: 
 
We say that a set 𝐴𝐴 ∈ 𝒞𝒞 is: 
(i) an atom of 𝜇𝜇 if 𝜇𝜇(𝐴𝐴) ⊋ {𝜃𝜃} and for every set 𝐵𝐵 ∈ 𝒞𝒞, with 𝐵𝐵 ⊆ 𝐴𝐴, we have 
either 𝜇𝜇(𝐵𝐵) = {𝜃𝜃} or 𝜇𝜇(𝐴𝐴  𝐵𝐵) = {𝜃𝜃}; 
(ii) a pseudo-atom of 𝜇𝜇 if (𝐴𝐴) ⊋ {𝜃𝜃} and for every set 𝐵𝐵 ∈ 𝒞𝒞,  with 𝐵𝐵 ⊆ 𝐴𝐴,  it 
holds either 𝜇𝜇(𝐵𝐵) = {𝜃𝜃}, or 𝜇𝜇(𝐴𝐴) = 𝜇𝜇(𝐵𝐵); 
(iii) a minimal atom of 𝜇𝜇 if 𝜇𝜇(𝐴𝐴) ⊋ {𝜃𝜃} and for every set 𝐵𝐵 ∈ 𝒞𝒞, with 𝐵𝐵 ⊆ 𝐴𝐴, 
one has either 𝜇𝜇(𝐵𝐵) = {𝜃𝜃} or 𝐴𝐴 = 𝐵𝐵. 
 
Detailed considerations on the problem of atomicity with respect to set 
multifunctions can be found, for instance, in Gavriluţ and Agop, 2016, and also 
in Gavriluţ et al., 2019.  
 

3. Towards a Fractal Theory of Atomicity 
 

The main idea in the quantum theory of measure and in generalized 
quantum mechanics is to provide a description of the world in terms of 
histories. A history is a classical description of the system considered for a 
certain period of time, which may be finite or infinite.  

If one tries to describe a particle system, then a history will be given by 
classical trajectories. If one deals with a field theory, then a history corresponds 
to the spatial configuration of the field as a function of time. 
 In both cases, the quantum theory of measure tries to provide a way to 
describe the world through classical histories, extending the notion of 
probability theory, which is obviously not enough to shape our universe. 
On the other hand, ordinary structures, self-similar structures etc. of nature can 
be assimilated to complex systems, if one considers both their structure and 
functionality (Gavriluţ and Agop, 2013). 
 The models used in order to study the dynamics of complex systems are 
built on the assumption that the physical quantities that describe it (such as 
density, momentum, and energy) are differentiable. Unfortunately, 
differentiable methods fail when dealing with the physical reality, due to 
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instabilities in the case of complex systems dynamics, instabilities that can 
generate both chaos and patterns. 

In order to describe the dynamics of complex systems, one should 
introduce scale resolution in the expressions of the physical variables describing 
such dynamics, as well as in the fundamental equations of the evolution 
(density, kinetic moment and equations of the energy). This way, any dynamic 
variable which is dependent, in a classical sense, both on the space and time 
coordinates, becomes, in this new context, dependent on scale resolution as 
well. 
 Therefore, instead of working with a dynamic variable, we can deal 
with different approximations of a mathematical function that is strictly non-
differentiable. Consequently, any dynamic variable acts as the limit of a family 
of functions. Any function is non-differentiable at a zero resolution scale and it 
is differentiable at a non-zero resolution scale.  
 This approach, well adapted for applications in the field of complex 
systems dynamics, in which any real determination is made at a finite resolution 
scale, clearly involves the development of both a new geometric structure and a 
physical theory (applied to the complex systems dynamics) for which the 
motion laws, that are invariant to the transformations of spatial and temporal 
coordinates, are integrated with scale laws, which are invariant to 
transformations of scale. 
 Such a theory that includes the geometric structure based on the 
assumptions presented above was developed in the scale relativity theory and, 
more recently, in the scale relativity theory with constant arbitrary fractal 
dimension. Both theories define the class of fractal physics models. 
            In this model, it is assumed that, in the complex systems dynamics, the 
complexity of interactions is replaced by non-differentiability. Also, the 
motions forced to take place on continuous, differentiable curves in a Euclidean 
space are replaced by free motions, without constraints, that take place on 
continuous and non-differentiable curves (called fractal curves) in a fractal 
space. 
 In other words, for a time resolution scale that seems large when 
compared to the inverse of the largest Lyapunov exponent, deterministic 
trajectories can be replaced by a set of potential trajectories, so that the notion 
of “defined positions” is replaced by the concept of a set of positions that have a 
definite probability density. 

In such a conjecture, quantum mechanics becomes a particular case of 
fractal mechanics (for the structural units motions of a complex system on 
Peano curves at Compton scale resolution). Therefore, the quantum theory of 
the measure could become a particular case of a fractal measure theory. One of 
the concepts that needs to be defined that of a fractal minimal atom, as a 
generalization of the concept of a minimal atom (for details refer to Gavriluţ et 
al., 2019). 
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4. Conclusions 
 
Different considerations on atoms, pseudo-atoms and minimal atoms 

are given for several types of non-additive set functions. Their properties are 
highlighted and also different relationships, examples and counterexamples 
are given. 
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ATOMI AI UNOR ANUMITE TIPURI DE FUNCȚII 
 NEADITIVE DE MULȚIME 

 
(Rezumat) 

 
În această lucrare, sunt prezentate diferite considerații asupra atomilor, pseudo-

atomilor și atomilor minimali ai unor diferite tipuri de funcții neaditive de mulțime. În 
acest sens, sunt prezentate proprietățile lor, exemple, contraexemple și diferite legături. 
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